
November 10, 1976	 6NL_FRA-TM-90

Monte Carlo Treatment of Fundamental-Mode Leakage

in the Presence of Voids

Ely M. Gelbard and Richard Lell

Applied Physics Division
Argonne National Laboratory

Argonne, Illinois 60439

FRA TECHNICAL MEMORANDUM NO. 90

Results reported in the FRA-TM series of memoranda
frequently are preliminary and subject to revision.
Consequently they should not be quoted or referenced
without the author's permission.

meter( or

AINIINME NATURAL Uti
IDANO MAU

Work supported by the U. S. Energy Research and Development Administration.

1111111111111;H:11111
r---F. W. THALGOTT - Idaho 774



The facilities of Argonne National Laboratory are owned by the United States Govern-
ment. Under the terms of a contract (W- 31-109-Eng- 38)between the U. S. Energy Research and
Development Administration, Argonne Universities Association and The University of Chicago,
the University employs the staff and operates the Laboratory in accordance with policies and
programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona
Carnegie-Mellon University
Case Western Reserve University
The University of Chicago
University of Cincinnati
Illinois Institute of Technology
University of Illinois
Indiana University
Iowa State University
The University of Iowa

Kansas State University
The University of Kansas
Loyola University
Marquette University
Michigan State University
The University of Michigan
University of Minnesota
University of Missouri
Northwestern University
University of Notre Dame

The Ohio State University
Ohio University
The Pennsylvania State University
Purdue University
Saint Louis University
Southern Illinois University
The University of Texas at Austin
Washington University
Wayne State University
The University of Wisconsin

NOTICE

rhis report was prepared as an account of work sponsored
by the United States Government. Neither the United States
nor the United States Energy Research and Development Ad-
ministration, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any
warranty, express or implied, or assumes any legal habil-
Ity or responsibility for the accuracy, completeness or use-
Mlness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe
privately-owned rights. Mention of commercial products,
their manufacturers, or their suppliers in this publication
does not imply or connote approval or disapproval of the
product by Argonne National Laboratory or the U S. Energy
Research and Development Administration.



Monte Carlo Treatment of Fundamental-Mode Leakaae
in the Presence of Voids'l

Ely M. Gelbard and Richard Lell

Applied Physics Division
Argonne National Laboratory
Argonne, Illinois 60439

ABSTRACT

A Monte Carlo method has been developed for the computa-

tion of the eigenvalue, as a function of buckling, in an infi-

nite lattice. This method has been used to test the accuracy

of earlier, approximate, void-worth computations, computations

which enter into the analysis of hypothetical accidents in

which voids collapse. Test results indicate that reactivity

effects due to the collapse of bubbles in a molten pool can

be computed, with reasonable accuracy b y the Behrens method,

used earlier by Goldsmith. On the other hand, Webb's esti-

mates of eigenvalue changes, caused by the expansion of fuel

pins into the voids of a previously voided lattice, appear

to be somewhat too high.

Work supported by the U. S. Energy Research and Development

Administration.
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I. INTRODUCTION

Prescriptions for the treatment of streaming effects in practical

reactor computations are based, generally, on numerous approximations,

approximations which are often not easy to assess. As a result it is

impossible to determine, a priori, how accurately computations, based on

such prescriptions, will predict neutronic properties of some particular

reactor. Under such circumstances, extensive testing is reauired to

establish the validity of the various techniques available for use in

streaming calculations.

Tests of the accuracy of computational methods fall into two, quali-

tatively different classes. In one class we find tests against experiment,

tests in which computational and experimental results are compared. In the

other are tests of all sorts in which the results of aoproximate computa-

tions are compared with "exact" results, i.e. computational results which

are known to be so accurate that, in practice, we may regard them as exact.

In the literature on streaming and anisotropic diffusion we find, how-

ever, that definitive test results of an y kind are scarce. Those tests which

have been carried out are generally tests of the Benoist method. Benoist'

has made extensive comparisons between Benoist-method com putations (with

and without absorption corrections) and various ex perimental data. These

comparisons suggest that the Benoist method is quite useful, but give

little information, directly, on its accuracy or limitations. Much more

impressive evidence of the validity of Benoist's method has come out of

the analysis of recent SNEAK experiments at Karlsruhe.
2
 In these ex peri-

ments sodium void worths were measured as functions of the height of the
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sodium-void interface. This was done in each of two configurations, one

with horizontal and one with vertical plates. Differences between worths

in those configurations were substantial, yet the worths were given quite

accurately by the Benoist method (apparently without absor p tion corrections).

While such experimental confirmation is essential, experimental tests

of streaming computations have very severe limitations. First, the net

amount of experimental information available to us is small, and is likely

to remain small, since experimental data on streamin g are very expensive.

Secondly, com parisons with experiment are inevitably ambi g uous because of

uncertainties in our cross section libraries. It seems clear, therefore,

that high-precision benchmark computations must play a most important role

in testing the various approximate techniques designed for streaming

computations.

Yet there are in the literature very few purely computational tests

of the adequacy of any such techniques. Thus, for example, we find only

one case in which the Benoist method is tested against a high-precision

benchmark calculation. This test is discussed in a recent paper by

Kobayashi, et al.
3
 Here the authors take, as their benchmark configura-

tion, a very simple two-zone reactor in r-z geometry. Each of the two

zones (representing, respectively, a core and a blanket) is composed of a

lattice of horizontal-plate cells, a lattice which extends to infinity

along the z axis. Via one-group S n calculations, the authors compute an

eigenvalue and flux shape in their benchmark reactor with the lattice

represented explicitly. They then recalculate the eigenvalue and flux

shape by diffusion theory, using a fairly conventional version of the

Benoist method. In this case, the authors conclude, the Benoist method

works very well.

1-3B
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But the use of S
n
 codes to test aoproximate streaming computations is

only practical in one- or simple two-dimensional geometries. Transport

calculations in com p licated three-dimensional geometries re q uire Monte Carlo

codes. To compute, by Monte Carlo, small eioenvalue differences between

explicit and homogenized reactor confiourations would, generall y , be very

expensive: many histories would be required to raise these differences

above the statistical noise. We find, however, that Monte Carlo studies of

anisotropic streaming effects are perfectly feasible if one is willing to

retain some restrictions on the problem geometry. It is our main purpose,

here, to show that this is true. Below we shall develop specialized tech-

niques for benchmark streaming calculations in lattices. These technioues

le
	

may be applied to lattices with very complicated cells, but we will always

assume that the lattice itself is infinite and uniform. Leakage effects

will be introduced through bucklings, and we shall compute the lattice

eigenvalues as functions of these bucklin g s. Such an anproach, obviously,

has serious weaknesses in that it tells us nothing about streaming effects

near boundaries of a real, finite lattice. On the other hand, a benchmark

calculation of eigenvalues as a function of buckling provides us with the

most direct (and, conceptuall y , the simplest) check on the validity of

anisotropic diffusion approximations. These approximations almost invari-

able assume the presence of a well-defined buckling. Therefore, it seems

natural to ask, first of all, how well they approximate the lattice eigen-

value when a buckling really does exist.

Our Monte Carlo estimate of lattice eigenvalues will be based on a very

simple relation, derived by perturbation theory. We develop this relation

next, in Section II, and then digress briefly to draw some inferences from

it. Finally, in Section III, we apply our Monte Carlo method to lattice

configurations of two different types, both containing voids.
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II. FUNDAMENTAL RELATION FOR THE LATTICE EIGENVALUE

AS A FUNCTION OF BUCKLING

Suppose the fission spectrum is the same for all nuclides and is

independent of the energy of the absorbed neutron. This is an assumption

which we will make in our derivation below and one which may be justifia-

ble, in different circumstances, for different reasons. First, the use of

a single fission spectrum is often a good ap proximation, especially in

reactors where most fissions occur in one particular nuclide. But,

secondly, we can if we like enforce, in our test problems, an artificially 

imposed restriction that all nuclides have one and the same fission spec-

trum. This might be done simply to guarantee the validity of benchmark

calculations designed to test some approximate computational method. In

our multi-energy test calculations, however, we have taken cross sections

and fission spectra directly from ENDF/B-III, and our assumption that

there is only one fission spectrum for all nuclides must be viewed as an

approximation.

Making this ap p roximation, it becomes possible in any infinite lat-

tice to define a fission Green's function, G(r 	 r), which has a very

simple meaning: G(r'	 r) dr is the number of fissions produced, per

second, in dr, by one fission per second at r'. It is crucial to our

argument that this number of fissions be independent of the flux spectrum

at r'.

In the absence of leakage (i.e. at B = 0), the lattice eigenvalue

problem takes the form

koso(r) = jr G(r'	 r)so(r") dr' ,	 (1)

1-3
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fs(r) dr f G(r" -4- r) 1 - e	 Ls0 (r) d_r'

Ak

k
o	

fq(r) dr J. G(r'	 r)s o (r-) dr'
(5)

where so(r) has the periodicity of the lattice. Now suppose there is a

well-defined buckling in the lattice. Suppose, in fact, that there are

well-defined x, y, and z bucklings so that we may write

S(r) =	 is(r)eill.2: ,	 (2)

where, now s(r) is periodic (and generally complex). In the presence of

these bucklings

(3)

It will be seen that, if B is very small, Eqs. (1) and (3) are integral

equations with very slightly different kernels. Therefore, by perturba-

tion theory,

f s i (r) dr f G(r"	 r)5 _	 dr'

Ak	 ko - k	 	  ,	 (4)
fs'or (r)s o (r) dr

where s'd is the adjoint fission source, such that

k o s lo (r) = fG(r -4- r',s*(r') dr' .

From Eq. (4)

kS(r) = jrG(r -4- r)S(r") dr'

i
ks(r) = .1- G(r' , r)e113.:(I:-I)s(r') dr' .

or

If the unit cell has three orthogonal symmetry planes, the imaginary part

of Ak will vanish:
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Ak,	
i'sr) dr jrG(r" -• 0[1 - cos B • (r' - rfls o (r-) dr'

- /N., T : 	  . (6)

ko
	irs'd(r) dr J. G(r" •-• r)s o (r') dr"

It is this last equation, Eq. (6), which we will use as the basis for our

Monte Carlo calculations.

There are, of course, many different Monte Carlo methods which could be

used to estimate the right-hand side of Eq. (6). Assume, for the moment,

that we know the adjoint fission source, s (*) (r). Then we might, for example,

proceed as follows. We would, first, run an ordinary, generation-by-

generation, Monte Carlo eigenvalue calculation, random-walking histories

through the lattice. In the course of this calculation, records would be

kept of the location, r', at which each particle was born, and the point,

r, at which it was absorbed. For each sample neutron we would compute

s 401E.i)	 - cos 13_	 (1. ; - rdlivEf(ri)

,	 i = 1, 2, . .	 N .	 (7)Ei	

c.(ri)

Here N is the total number of sample neutrons, and the index, i, identifies

individual histories. Further r is the birth location of the i-th sample
—g

neutron, while r i is the point at which it was absorbed. It seems reasona-

ble to expect that

(8)

—

More precisely, it seems clear that, as the number of generations, and the

number of histories per generation, tend to infinity, the estimator E will

converge in probability to T.

q(11,i),,Ef(Li)gairiji
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If T, as defined by Eq. (6), can be expanded in powers of the compo-

nents of B then, to lowest order in these components,

2L
{;_2x2	 B2t2	 B2k2]

yy	 z z

e '*(r) dr fG(r 	 r)(r)'(,y,z - rx,y,z ) 2 s o (r') dr'
T2
x,y,z

fq(r) dr p(r-	 r)s o (r-) dr-

It will be seen that the quantities t 2	 are mean-square distances
x,y,z

from birth to fission, weighted by the adjoint fission source at each fission

site.	 Again, to leading order

k=k0/ 1	 171132 4. 5 2B2	 2,2B2)

_	
9	 yy	 z z

(10)

Equation	 (10) generalizes to lattices the relation

k =	 k 0 /[1	 + M 2 B 2 ] 	 M2	 ,	 (11)
6

valid for homogeneous media.

To use the method described above one needs to know the adjoint fis-

sion source, s. This is a disadvantage of the proposed method but,

generally, it is not a very serious disadvantage. The adjoint source in

a cell (i.e. the importance function for fission) is usually pretty flat,

and it is often permissible to assume that it is constant. We find, in

fact, in two test cases discussed below, that s (*) really is constant.

When necessary, it is often possible (as has been pointed out by Matthes
4

)

to calculate s't; in the course of the Monte Carlo calculation which generates

s 0. 
This could be done, for example, as follows:

(9)
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1. Subdivide all fuel-bearing regions into boxes. These should be

small enough so that s o is nearly flat over each box, but large

enough so that, in each box, a reasonable number of histories

will start and end.

2. Compute the number of fission neutrons produced in box j, at the

end of each generation, by sample neutrons which started that gene-

ration in box i. From this information form the Green's function

for fission, G(i	 j).

3. Transpose the Green's function and solve the adjoint eigenvalue

problem.

From Eq. (10), in one-group problems, we can easily define an effective

homogenized diffusion coefficient:

x,y,z	 2 a x,y,z

Here 2 a is the cell-averaged absorption cross section, weighted with the

zero-buckling scalar flux. Further £ 2 , 2, 2 , and t2 are mean-square distances
x y

from birth to fission, weighted with the importance function s71 . It is

interesting to note that the Benoist method (without absorption corrections)

gives a result formally identical with Eq. (10): but in the Benoist version

the mean-square distances are unweighted averages of squares of distances

from birth to absorption. It is in part due to these differences that the

Benoist method does not preserve the lattice eigenvalue,
5
 even in one-group

problems.

We have assumed, so far, that the lattice cell has three orthogonal

symmetry planes: but what if it does not? In this case we must expect that

Ak, as defined by Eq. (6), will generally be complex. When this is true

then, strictly speaking, a buckling cannot exist anywhere in the lattice.
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If a reactor core is composed of such a lattice a buckling will not exist

anywhere in the core.

Note that Ak is always real in one- g roup problems, regardless of the

cell geometry.	 (This assertion is proven in Appendix A.) It is easy,

however, to construct a multigroup problem configuration in which Ak is

complex, so that tnere can be no buckling. We consider, for example, a

two-group model u a slab reactor composed of asymmetric cells. The cell

geometry is shown in Fig. 1, and cell parameters are listed in Table I.

Our slab reactor consists of 40 such cells, side by side, with vacuum

boundaries on the left- and right-hand faces of the slab. We have com-

puted the flux in this reactor by diffusion theor y , but a transport solu-

tion would not be qualitatively different. The thermal flux is plotted in

Fig. 2.	 It will be seen that this flux (and, of course, the fission source)

is strongly asymmetric. Obviously the curve in Fig. 2 looks nothing like

a cosine, and we find that one cannot fit a cosine ver y well to any seg-

ment of this curve (any reasonably long segment) anywhere within the core.

Much of the theory of homogenization is based on the assumption that the

fission source is separable, as in Eq. (2). The assumption implies that the

fission source within the lattice has, roughly, a cosine shape. The global

consine shape is, howover, slightly corrugated; that is, it is distorted by

the local bumps and dips induced by local structure in each lattice cell. A

priori it seems no more implausible to make such an assumption than to postu-

late a cosine fission source in any simple homogeneous material, and in fact

we will continue to assume a buckling in all the work reported here. Neverthe-

less, as we have seen, this is not always an admissible assum ption. Clearly

it makes little sense to postulate a buckling in a reactor whose structure

is sufficiently irregular. Apparently a bucklina cannot exist, strictly
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speaking, even in perfect lattice, if the lattice cell is asymmetric.	 In

fact, little has been done, so far, to establish a range over which Eq. (2)

is valid, although the concept of a buckling in a lattice plays a fundamen-

tal role in many reactor computations. Clearly, much work is needed before

we can establish where we have the right to introduce a buckling. To define

homogenized cross sections, and homo genized diffusion coefficients, without

assuming any buckling is rather difficult. The problem of homogenizing

a reactor's small-scale structure without relying on a buckling is discussed

extensively in Ref. 6.

It seems ap p ropriate, before closing this section, to comment on the

accuracy and range of validity of the proposed perturbation method. Clearly

Eqs. (9) and (10) are only accurate to second order in the components of B.

Further, these equations are not valid, for any range of bucklings, unless

the mean-square chord lengths, z 2 , 2, 2 , and 2 2 , are all finite.	 In practice
x y

it is not at all safe to assume that either of these conditions will be

satisfied.

Thus, for example, it is not unusual for leakage probabilities in

fast reactors (particularly in GCFRs, or sodium-voided LMFBRs) to reach

30%. In situations of this sort it would certainly be rash to assume that

B 4 terms in .n,k can be neglected, or that Eas. (9) and (10) are

interchangeable.

Neither is it unusual to find that two, or all three, of the mean-

square path lengths are infinite. In fact, as has been pointed out by

Kohler and Ligou, 7 if a lattice contains planar regions which are entirely

void at least two of the mean-square path lengths must be infinite. Of

course, planar voids will always occur in a slab lattice, or a square

12



lattice of fuel pins, if the coolant is voided. But a voided hexagonal

lattice will also contain planar voids 7 if the void fraction is, roughly,

greater than 32%.

The range of validity of Eq. (6) is determined b y quite different

considerations. First of all we have not re q uired, in deriving this e q ua-

tion, that any mean-square chord length be finite. In our derivation we

have treated leakage as a perturbation and thus, implicitly, we have assumed

that (Ak/k o ) « 1: but there are situations where even this assumption is

unnecessary. After all, Eq. (6) would be exact if we reolaced s*) , the

unperturbed adjoint source, by s*, the adjoint source perturbed by the

buckling. But suppose a cell contains only one fuel pin, or plate, and

that this pin or plate is very small in mean-free paths. Then the adjoint

source will be almost flat, and remain almost flat even when the leakage

probability is large. Correspondingly, even when (Ak/k 0 ) :1; 1, Eq. (6)

may be a good approximation. In fact, it is interesting to note that

Eq. (6) is rigorous for any buckling if the cell is homogeneous.

III. APPLICATIONS

In this section we apply the methods develoned above to two void

streaming problems. These problems have been chosen for inclusion, here,

not because of their intrinsic importance, but because we feel they serve

us very well as illustrative examples. Both problem configurations are

fairly simple, but three-dimensional. Both problems have already been

treated approximately by other authors. In both problems void streaming

is singled out as the only significant effect.
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We begin with a discussion of a problem first posed and analyzed by

R. E. Webb in a thesis written at Ohio State University. 8 Webb postulates

an LMFBR accident in which sodium has been expelled from the core. Further,

the clad has melted, so that bare fuel pins are surrounded b y void. At

this point the fuel expands and uniformly fills each cell. Homogenization

decreases leakage from the lattice, increasing the lattice eigenvalue.

Through one-group calculations Webb estimates the eioen yalue change pro-

duced by this smearing of fuel in the Fermi and EBR-II reactors. His one-

group lattice parameters are listed in Table II. We shall not attempt to

decide whether these parameters are reasonable or not but it should be noted

that the fuel pins in Webb's model are only, roughly, a tenth of a mean-free

path in diameter. One may expect, therefore, that even for rather high

bucklings, the adjoint source will remain fairly flat and our perturbation

method will continue to be valid. Later we shall try to show that pertur-

bation theory in this case is, in fact, quite accurate.

Webb's computations are based on the Behrens method,
9
 drastically modi-

fied to accommodate peculiar features of the voided lattices. The formulas

developed by Behrens, for the treatment of streaming through holes, contain

a factor, Q, which depends on the shape of the holes. 	 In lattices contain-

ing planar voids Q is always infinite, 18 and planar voids occur in all the

voided lattices Webb treated in his thesis. Webb notes, however, that the

divergence of integrals defining Q results from artificial features of

idealized lattices (which, by definition are, of course, perfectl y regular

and infinitely large). To avoid such divergent integrals, Webb attempts

to apply the Behrens method to finite lattices, and to define a range of

plausible Q values for finite Fermi and EBR-II cores. We shall not review
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his reasoning here, but simply exhibit his final results. Webb's estimated

eigenvalue changes, computed via his modified Behrens method, are listed

in the first row of Table III.

Corresponding eigenvalue changes have also been computed by Monte

Carlo processes like those discussed above in Section II. Note that if a

lattice is composed of one, single material, then no matter how the density

of that material varies in a cell, the unperturbed adjoint source, s'8- , is

flat. Thus, in this case s'; drops out of Eq. (6).

Our Monte Carlo results appear, along with Webb's, in Table III. It

will be seen that Webb's reactivities are substantially higher than ours

but are, in order of magnitude, quite reasonable. 11

So far our computations have all been based on perturbation theory.

It is interesting to note, however, that if B is purely axial, the exact 

equation for the lattice eigenvalue takes a very simple form, a most con-

venient form for Monte Carlo simulation. To develop an effective Monte

Carlo simulation method, we assume, again, that

kS(r) =	 r)S(r') dr'
	

(12)

using the same notation ar in Eq. (2). Now we postulate that S(r) =

s(x,y) cos Bz, and find that

ks(x,y) = jrG(x-,y',z 	 x,y,z)s(x',y) cos B(z' - z) dr"

jrqx",y',0	 x ,Y,( z - z")]s(x',y") cos B(z' - z) dr' . (13)

Apparently Eq. (13) was first obtained by Kohler and Ligou and we have, here,

followed their derivation closely. It will be convenient, in Eq. (13), to

let Z = z' - z, so that
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ks(x,y) =	 x,y,Z)s(x',y") cos (BZ) dx dy' dZ .	 (14)

We evaluate k from Eq. (14) by a conventional iterative process,

starting from a guessed fission source. Drawing sample neutrons from this

source (always with z = 0), we random-walk these neutrons through a single

generation, producing fission source sites by conventional techniques. We

then multiply the weight attached to each source site by cos BZ, where Z

is the vertical coordinate of that site. The modified weights are then

used, next, to establish a source distribution for the beginning of the

second generation. The whole process is then repeated, this time taking

sample neutrons from the new source distribution.

In principle, of course, it is possible to reiterate this process

indefinitely. In practice, however, one finds that the particle weights

will fluctuate more and more in succeeding generations, and that more

and more weights will turn negative. Eventually, the whole Monte Carlo

process becomes hopelessly inefficient as the variance within generations

tends to infinity. This deterioration progresses at a rate which in-

creases with IB1. Fortunately the convergence rate of our iterative

process in cell problems will, generally, be very high (if the cell is

not too large in mean-free paths). The convergence rate of a Monte Carlo

process depends, roughly, on the dominance ratio, 6,12 defined as the

ratio of the first two eigenvalues, 	 E k 2/k 1 . Here 1( 1 is the dominant

eigenvalue, while k 2 corresponds to the first overtone. In our case the

entire Monte Carlo calculation is carried out within a single cell; the first

overtone fission source will change sign within the cell, on some curve in

the x, y plane, so that the radial buckling will be very high and, corres-

pondingly, k 2 will be low. We can expect, as a result, that d « 1, and,

thus, that convergence will be very fast.
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k
HOM 

(B) - k
HET 

(B)
—	 - /1(-ET(!)

Ak/k E (15)

In Table IV we list estimates of the quantity Ak/k computed by Monte

Carlo, for the EBR-II lattice. Here

where k
HET is the eigenvalue in the original, heterogeneous lattice, while

HOm is the eigPnvalue in the homogenized lattice.
13

Cross sections in

the homogeneous cell are obtained, of course, by volume-averaging those in

the heterogeneous cell.

The entries in Table IV correspond, as will be seen, to two different

bucklings. The first buckling (B 2 = 0.00204) is just the Z buckling in

Webb's EBR-II calculations. The second (B 2 = 0.00564) is the net buckling

in Webb's calculations treated, here in our calculation, as if it were all

in the Z direction.

In both cases the initial Monte Carlo fission source was flat. It

is easy to show that the eigenvalue obtained at the end of the first

generation is exactly the same as the perturbation theory ei genvalue defined

by Eq. (6). A flux dip at the surface of the fuel pin, induced by leakage

should develop in the second and succeeding generations, raising the

heterogeneous eigenvalue, k HET (B), and thus lowering Ak/k. Apparently,

however, this shift in eigenvalue is too small to be observed here. It

seems safe to say that our initial results, shown in Table III, are accu-

rate to within the indicated statistical uncertainties.

We now turn to a second accident scenario, discussed in another Ohio

State University publication, a Master's thesis by Goldsmith. 15 ' 16 Goldsmith

assumes that a core meltdown has occurred for some reason, and that molten

fuel is lying, in a bubbling pool, on the floor of the reactor vessel. One

would expect that, as the temperature rises in the pool, the Doppler effect
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would come into play, limiting the total energy released in the excursion.

But this process takes a finite time, during which perhaps the pressure in

the pool may rise to such a point as to collapse the bubbles. Goldsmith

postulates that all the bubbles collapse simultaneously and so quickly

that the volume-avera g ed density of fuel remains unchanged.

We shall not ask here whether such a sequence of events is plausible.

There are various reasons for skepticism but, at any rate, bubbles may 

appear in molten fuel, and one ought to be able to determine their worth.

In his thesis Goldsmith, like Webb, computes void worths by the Behrens

method. However, since Q is finite in this case, the Behrens method may

be used directly without difficulty. Further, the use of the Behrens

method is justifiable, here, if one is willing to accept a very simple

model of the boiling pool. To see in what sense this is true, we review

key steps in Goldsmith's argument.

In his reactivity computations, Goldsmith postulates, first of all,

that the eigenvalue is given by the following equations:

k(B 2 ) = ko/(1	 m2B2)

ko = vEf/Ea , M2 =	 k2

6
(16)

Here i 2 is the mean-square distance a neutron travels from birth to absorp-

tion. Thus, in the original bubble-filled pool

11	 I R 2 	 B2)
HET

6

and, after collapse of the bubbles

//LI	 k	 B22k
HOM 

= k 
0

6 HOM	 •

k
HET (17)

(18)
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1
HET

97-
HUM

( 2 0)

jrw (1 ) dr j-G (r: 	 r)lr - r1 2 S(r') dr'
12 -

f	 tw(r) dr J' G(r-	 r)S(r') dr'

Clearly Eqs. (17) and (18) imply that there is a well-defined buckling in

the pool, and that this buckling does not change when the bubbles collapse.

Further it has been assumed, here, that the physical properties of the

fuel-bubble mixture are uniform, at least over much of the pool. Combining

Eqs. (17) and (18) we find that

A	 E	 kHom - k
HET

[1(0	 -	 kHOM) HET
1 (19)

k o £H OM

Finally, assuming k nom ;,u, 1, Goldsmith writes

[1( 0 - 1)	 7	 1/(0 - 

11 
HET

A - 	 	 1	 0,

1( 0	7:2-
 HUM	

k o

Before any further discussion of Goldsmith's computations, it is

necessary to comment, briefly, on his definition of P. Goldsmith expli-
citly takes 77- to be the mean-square distance from birth to absorption.

But it is easy to show that, in our one-group problem configuration, the

mean-square distances to absorption and fission are the same. Thus, the

mean-square distance to fission, given any source, S(r), and weight

function w(r), is given by the expression

19



The mean-square distance to absorption is

jrw(r)Fa (r)/vz f (r) fG(r:	 - r1 2 5(r") dr'

12 - 	
a	

.1w(L)Fa(r)/vEf(r)] f G(r:	 r)S(r") dr'

Clearly, so long as the ratio Ea/'f is position-independent, q

We have the right, then, to consider Goldsmith's mean-square distances

as mean-square distances to fission, and it will be convenient to do so

in our work below.

It has already been shown above that Eq. (17) is valid, to first-order

in B 2 , for regular lattices: Goldsmith, however, uses this same expression

to treat bubbles which are randomly arranged. To generalize our arguments

so as to deal with such arrays is not at all a simple matter. 17 It should

be noted that even our definition of buckling is only applicable to

periodic lattices. Of course, we cannot expect that bubbles in a molten

pool will place themselves on lattice sites of any kind but, if there are

enough bubbles in the pool, exact details of their arrangement may be

unimportant. The bubbles could then be rearranged in many ways without

changing the eigenvalue in the pool. Imagine, for example, that the

bubbles are rearranged by the following process.

First the whole pool is divided into cubes, all equal in size. Each

cube is to be large enou g h to contain many bubbles, yet small enough so

that many cubes fit into the pool. Next one cube is selected (a "typical"

cube) and that cube is used, in place of all the others, to construct a

second, replica pool which (aside from details of the bubble distribution)

is just like the first. If there are enough bubbles in the pool, and in

the typical cube, then (barring unlikely accidental bubble configurations)

we may expect that the original and replica pools will have almost equal
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eigenvalues. If this is true, we have successfully replaced an irregular

array of bubbles with a bubble lattice, and we can now write

k(B) = k o/[1 + J_z2B2
6

Of course in principle the i in Eq. (26) should be computed in the

bubble lattice, ciot in the random bubble array. In practice, however,

we shall neglect this fine distinction: 7 in our comp utations (as in

Goldsmith's) will be the mean-square distance from birth to fission in

the original random array. It seems reasonable to expect, nevertheless,

that Eq. (21) will give a useful estimate of the effect of random features

in the bubble distribution.

Now, assuming the validity of Eq. (21) we proceed to test the

accuracy of Goldsmith's mean-square path-length computation. These mean-

squares are computed, in Goldsmith's work, by the Behrens method. 9 But it

has been pointed out by Benoist' that the Behrens method is generally in-

correct in that Behrens neglects angle-path-length correlations between

successive flights. Such correlations exist in heterogeneous media even

when the scattering is isotropic.' Behrens assumes, in other words, that

T2 . fik2 

•
	

(22)

HereTr is the mean-square length of a single free-flight, while n is the

mean number of flights per neutron history. Equation (22) is incorrect

in general: ' one can show, however, that it is correct, in one group,

whenever E s /E t and vE f/Et are position independent.
18

In summary, then, we find that Eq. (17) is correct for low bucklings

and regular bubble lattices. Further, it seems reasonable to use Eq. (17)

( 21 )
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to treat random arrangements of bubbles. The mean-square distance in

Eq. (22) is equal to the mean-square length of each flight, times the mean

number of flights per neutron history. In this sense the Behrens method

is valid.

On the other hand, other aspects of this method remain to be dis-

cussed. Thus, to assess Goldsmith's results, it will be necessary to test

the accuracy of the Behrens formulas used by Goldsmith to compute the mean-

square lengths of single flights. We have done this by simple Monte Carlo

methods.

Our Monte Carlo computations were carried out for regular bubble

lattices, and for irregular bubble arrays: but we did not attempt, in

any of our work, to deal with "truly random" arrays. In fact it is not

clear at all what is meant by a "random" array of bubbles. This term has

been used here rather loosely to designate a bubble distribution which

contains irregularities of some sort. One would certainly expect irregu-

larities in a network of bubbles formed in molten fuel. It is also possi-

ble, however, that systematic features will be forced onto the bubble dis-

tribution by laws which govern the nucleation, growth, and motion of the

bubbles.
19
 Since so little is known about the nature of the "random" bub-

ble distributions, the effort required to generate and store such distri-

butions seems to be unwarranted. Instead we have run Monte Carlo calcula-

tions for "randomized" arrays, constructed as follows:

Imagine the molten fuel cut up into cells, all identical in size and

shape. Suppose, for convenience, that these cells are cubes, as they are

in all the work discussed below. Suppose, further, that the bubbles are

perfectly spherical. Select a cell width, a bubble diameter (smaller than

or equal to this width), and a probability, p, that any given cell contains
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a bubble. Then, in each cell independently, decide by random sampling

methods whether that specific cell contains a bubble, or does not.
20
 If

there is a bubble in the cell then, as in the regular arrays, it is placed

exactly at the center of the cube. It will be seen that the "randomized"

arrays, as constructed here, have both regular and random features, tending

to become more regular as p 	 1.

In Table V we list some values of the quantity p, p = z2 /z2	 _ 1,21
HET HON

computed for various bubble arrays, by various methods.
14
 Here Z 2	 and

HOM

fHET
2	 are, respectively, mean-square path lengths in "corresponding" homo-

geneous and heterogeneous media, i.e. homogeneous and heterogeneous media

with equal average densities. In all cases cited in this table the bubbles

were taken to be spheres with d = 2 cm, where d is the bubble diameter. In

each case the bubble volume constituted 25% of all the volume of the liquid-

bubble mixture; but the total cross section of pool material (i.e. the mate-

rial around the bubbles) varied in our computations, covering a range from

0.1 to 4 cm -1 . Regular and irregular arrays differed, primarily, in t, the

thickness of the cubic cell.

With d given in regular arrays, the cell width is determined by the

bubble volume fraction. When this fraction is 25%, we find, still assuming

d = 2, that t	 2.56 cm. On the other hand, in randomized arrays there is,

at our disposal, an additional degree of freedom: t, in such arrays, is

determined jointly by the bubble volume fraction and by the probability p.

Now we have already noted that the "randomized" arrays become more regular

as p increases. Therefore, in all our calculations, we take p as small as

possible for a given volume fraction. It is easy to see that p is mini-

mized when t and d are equal, so that a bubble just barely fits into a cell.

Given that t = d, it turns out that we must set p = 0.477 to achieve a bub-

ble volume fraction in the randomized array of 25%.
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Values of p, computed by the Behrens method, are listed in columns 2

and 3 of Table V, and corresponding Monte Carlo values will be found in

columns 4 and 5. The confidence intervals in columns 4 and 5 are standard

deviations.

Behrens, in his first paper on void streaming, 9 actually gives three

different approximate expressions for :27 . One is designed to treat widely

spaced holes, while a second is specifically for closely spaced holes.

The third (the Behrens "general" formula) interpolates between the other

two, asymptotically approaching the appropriate limits as the bubble

spacing goes to zero and infinity. It will be seen that, over the whole

range of our table, the Monte Carlo p values agree fairly well with p

values computed through use of the prescription for closely-spaced holes.

The general formula, on the other hand, gives poor results when A, the

mean free path, is large. It is interesting to note that Goldsmith, in

all his thesis work, used only the formula for closely spaced holes. We

will not discuss here his arguments for this procedure: in fact, his logic

is not entirely consistent with our computational results. At any rate,

whatever the reason, Goldsmith's choice of the formula for closely spaced

holes was apparently correct.

It will be seen from Table V that, given A, 2, 2 is greater for ran-

domized arrays than for regular lattices. This effect is probably due to

the occurrence of bubble clusters in the randomized arrays. Ap parently the

formation of such clusters more than compensates for the blockage of long

streaming paths which are present in the regular lattice, but are closed

off by fluctuations in the randomized bubble pattern.

We see that, for regular lattices, the Behrens closely spaced hole

formula generally overestimates p, but is accurate here to within about 20%.
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For our randomized lattices this same formula underestimates p, though not

by more than 10%. At low bucklings (and within the limitations of

Goldsmith's model) a 10% error in p produces a 10% error in A [see EQ. (20)]:

the numbers listed in Table V gives us, then, a clear indication of the

accuracy of Goldsmith's results. But, of course, as the leakage probability

approaches unity, one cannot any longer neglect B" and higher-order terms in

k. These terms may have a significant effect on the bubble reactivity, and

we examine this effect next.

If, at the buckling of the pool, the fission source and the adjoint

source are practically flat, then, from Eq. (6),

Ak	
jrdr	 r)[1 - cos B • (r' - r)] dr'

1( 0	 f dr f G(r"	 r) dr"

E	 (1 - cos B • Ar) E R .

Using the above equation, in place of Eq. (11), in Goldsmith's derivation,

we get

A = .P(1(0 - 1)

	

RHETil	 RHOm) 	
1
	

(24)

1(0
	

1 HOM( 1 	RHET)

It will be seen that Eqs. (20) and (24) are formally the same but that

here, in Eq. (24) fi takes the place of p.

Clearly A, as defined in Eq. (24), depends on the buckling 8 2 . The

buckling, in turn, will depend on the size and the shape of the pool and

thus, implicitly, on the entire history of the accident. Since one can

postulate many different accident scenarios it seems impossible to single

out a buckling here by any very rigorous argument. Instead we shall try

(23)
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to select a plausible buckling and, for that buckling, will then compute

Suppose that, in a DEMO plant, the sodium is voided and a meltdown

occurs. Reasonable number densities for the liquid in the molten pool

(i.e. the material around the bubbles) are listed in Table VI.
14
	In

Table IX we have also listed corresponding one-group constants computed

for a pool made of this liquid, but with a void fraction of 25%.
14

Unless the molten pool is close to critical, we must expect that neu-

tron streaming in the bubbles will not be crucially important. Therefore,

as in Eq. (20) we assume that k (k Hom , for convenience) is 1.0. In a

one-group model, with parameters taken from Table IX, we find that this

pool will just be critical when B 2 = 0.0037. Monte Carlo values of p and

p computed at this buckling, still in the same one-group model, are listed

in Table VII. There, for comparison, we also list p values computed by

the Behrens method for closely spaced holes. We see some indication, in

Table VII, that transport effects do reduce the bubble reactivities, but

such effects, if they exist, are too small to be treated, reliably, by any

of the methods discussed in our paper. From all the data listed here in

Tables V and VII, we conclude that Goldsmith's bubble reactivities are

reasonably accurate even for the bucklings postulated in the molten pool.

IV. DISCUSSION

Obviously many questions about the Webb and Golsmith calculations remain

unanswered. The models used by Webb and Goldsmith, models we have adopted

also in our benchmark calculations, are grossly oversimplified. Some approxi-

mations in these models are rigidly built into our computational techniques.

Thus our Monte Carlo calculations are firmly based on the assumption that a
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well-defined buckling exists in the lattice. On the other hand, it is not

difficult in Webb's fuel pin computations to drop the single-group approxi-

mation and redo these calculations with a full-scale, multi-energy, Monte

Carlo code.

Today calculations of void worths in the Fermi and EBR-II reactors

seem somewhat dated. For this reason we have chosen not to redo the ori-

ginal Webb calculations but, instead, to compute a multienergy void worth

in a simplified DEMO plant cell geometry. This computation was carried

out with the aid of a version of VIM," specially modified for our pur-

poses by R. Prael. Parameters characterizing the problem configuration

are listed in Table VIII. We find, in this case, that homo genization of

the rods increases the lattice eigenvalue by 20.005 ± 0.0006. 14 This

effect is of the same order of magnitude as those studied earlier in one-

group calculations.

It has still been assumed in this calculation, as in all the work

reported here, that the buckling does not change when the voids disappear.

This may not really be true for various reasons. Obviously if the homo-

genization process is accompanied by other changes in the core geometry,

the buckling will probably also change. But even if no other changes in

geometry occur, homogenization alone may change the buckling. The buck-

ling in a reactor core will, after all, depend on the extrapolation length

at the core-blanket, or core-reflector interface. There is some reason to

believe 14 that this extrapolation length will drop substantially if, in

the voided lattice, the pins are homogenized. Such an effect would tend,

to some extent, to decrease the resulting reactivity insertion. Very

little is known at this time about flux shapes near interfaces in voided

lattices and we cannot, therefore, predict the magnitude of this effect

with any confidence.
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The bubble worth calculation has also been repeated, for one regular

cubical bubble lattice, with the aid of the same modified version of VIM.

Parameters which characterize the molten pool were taken, again, from

Table VI. We recall that all parameters in this table are thought to

typify a pool which might be formed in the meltdown of a DEMO plant. In

a pool with these parameters the eigenvalue change which is produced when

we homogenize the pool is :;-.9.011 ± 0.001. In the corresponding one-group

calculation we get, instead, an eigenvalue change 20.014 ± 0.002. It is

not difficult to see why one-group calculations might overestimate the

worth of voids. All our one-group constants were obtained by flux-weighting:

our one-group E t is, thus, a flux-weighted average of E(E). But the

leakage will tend to be relatively high where E t is relatively smell. Thus

a flux weighted average E t may well exaggerate the magnitude of all effects

induced by leakage from the lattice.

S
n 

bubble-worth calculations have been run by MacLaughlin and Turner
22

at Los Alamos. The problem configurations discussed in Ref. 22 and here,

in our work, are very different from each other: it is impossible, therefore,

to make detailed comparisons between our results and those reported from

Los Alamos. Roughly, however, their results agree with Goldsmith's and with

ours.

In Goldsmith's work, as in Ref. 22 there is some discussion of stream-

ing effects which we have not dealt with here explicitly. There are, in

fact, two such effects, namely:

(1) the "mass importance effect"; and

(2) the "neutron self-multiplying effect".

Apparently the first effect, as envisioned by Goldsmith, would occur

in a molten pool if bubbles were denser near its center than near its
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outer boundary. This density difference might come about accidentally, as

a result of statistical fluctuations in the bubble distribution.

It seems clear that we cannot deal with fluctuations of this sort in

our calculations, which make no distinctions between one part of the pool

and another. Goldsmith finds this mass importance effect to be small, and

we have no way to confirm or refute this conclusion.

A somewhat different "mass importance effect" has been discussed, more

recently by McLaughlin. 23 In this latest work, McLaughlin feeds void reac-

tivities directly into hydrodynamics calculations, and comnutes fuel distri-

butions as a function of time throughout the course of a postulated acci-

dent. According to the computations reported by McLau g hlin, a net outward

flow of fuel accompanies the pressure pulse which tends to close the bubbles.

The author finds that the decrease in importance of the fuel as it moves

outward compensates, almost exactly, for the reactivity inserted by the

collapse of bubbles. Again, this sort of "mass importance effect" cannot

be included in our work.

On the other hand, the neutron self-multiplying effect, first noted

by McLaughlin and Turner, can be treated by methods used above, in our

bubble computations. The effect itself is easil y understood. Suppose, for

example, that very tiny bubbles, uniformly scattered, comnose half the

volume of the pool. The diffusion coefficient, D, in the pool is then

equal to two thirds E t . Here E t is the total cross section of the liquid

in the pool, the liquid between the bubbles. Now sup pose that f, the bub-

ble volume fraction, remains constant, while the bubble radius gradually

increases. Then D, at first, will also increase because of streaming

effects. But if the bubble growth continues, the distances between the

bubbles will finally far exceed the mean-free path A, where A	 1/E t . At
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this point, the liquid between bubbles will act like an infinite multiply-

ing, homogeneous medium with D = 1/3
C
 Thus, there must come a time

when the effective D stops increasing but, instead, moves downward towards

a limit half as large as its initial value. For convenience we have used

a one-group terminology in this discussion but our argument is, in fact,

perfectly general.

As the bubble size increases the mean-sauare path length becomes

infinite. We draw this conclusion, for example, from the pro perties of

Behrens widely-spaced hole formula. Thus, the Behrens method would give

us an infinite diffusion coefficient for infinitely large bubbles, and it

is for this reason that MacLaughlin separates the "Behrens effect" from

the neutron "self-multiplying effect".

Suppose, however, that we compute the eigenvalue in the pool through

use of Eq. (6), taking note of the fact that, in this case s o and s (*) are

flat. Imagine the pool to be divided into two sets of zones. Pool material

lying in zones of the first set ("A zones") is located within, let us say,

100 mean-free-paths of the surface of a bubble, while material in the other

set of zones ("B zones") is not. As the bubble size increases (with f

constant) most of the fuel will come to lie in B zones, while relatively

less and less remains in A zones. But for all the tracks which start in

A zones the average [1 - cos B • Ar] is finite. Therefore, T 9 defined in

Eq. (6) will eventually reach the same limit as if there were no bubbles

in the pool. In this sense, the self-multiplying effect is contained in

Eq. (6).

On the other hand, as the bubble size increases, s* will eventually

start to dip near bubble surfaces. Since, in our work, this dip has been

ignored, our bubble reactivities for small x's (perhaps for A = 0.25 in

Table V) may be too large.
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It has been our purpose, here, to develop a high-precision Monte

Carlo method for benchmark streaming calculations. We hone this method

will prove useful, eventually, for testing design and analysis techniques

in realistic situations. Here, however, we have focussed our attention on

relatively simple illustrative examples so as to brin g out salient features

of our method as -harply as possible.

The strong and weak points of this method should be fairly clear by

now. We impose a buckling, or several bucklings simultaneously, in a

Monte Carlo calculation. The bucklings need not be established by outer

iteration, as in more common Monte Carlo processes. Further the

buckling need not be deduced from the Monte Carlo p utout but is instead,

part of the input. In short, we feel the proposed method is an effi-

cient and convenient technique for computing ei genvalues, as functions

of buckling, in complicated lattices.

As for its disadvantages, one which we have mentioned earlier seems

most important. Our method cannot treat interlattice boundaries,

boundaries between regions with different lattice structure. Benchmark

computations in the presence of such boundaries would be extremely diffi-

cult by any available technique. For relatively simple geometries such

computations are possible by S n methods as Kobayashi and his coworkers

have shown.
3 But more realistic reactor configurations with explicit

lattice structure are likely to be three-dimensional. S n
 calculations

in such configurations would be extremely expensive, and perhaps totally

unfeasible at this time. Our inability to treat boundaries between

lattices in high-precision streaming computations seems a serious weak-

ness in present computational techniques.
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Appendix A

VANISHING OF THE IMAGINARY PART OF THE ONE-GROUP EIGENVALUE

In one group we can always write

kS(r) =	 irG(r 	 r)S(r') dr'
	

(A-1)

where G is the fission Green's function and S is the fission source.

Since S = vz
f

(1):

kvE f (r)q)(r) =	 Jr yr' -> r)vE f (r)vE f (r),1)(r") dr' ,	 (A-2)

Here G is the flux Green's function, i.e. the scalar flux at r due to

an isotropic delta function source at r'. From Eq. (A-2) we see that

k(r) = f a(r'	 611,(r') dr'

tp(r) E vr7E7-67(1)(r)

o(r' r) . 7 \'OTT;(7.7) yr' -> r)STET(17 . 	 (A-3)

Since G is symmetric, G is also symmetric, and k must be real.

Further one can show that ;,

	

f4(r) dr jr G(r' r)D - e1 	 dr'_ _

fs(r)so(r) dr

the perturbation theory estimate of Ak, is also real. To show that this

is true we examine the adjoint integral equation. By definition

k s(r) = fG(r	 r)s*o(r') dr	 (A-5)

or

k s(r) = jr yr ) f (r)s(r) dr

(A - 4)
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k s(r) =	 fG (r +r)vE (r')s(r') dr' .
	 (A-6)

But

k (1) 0 (r) = p o (r' + r)vr f (r10 0 (r') dr' .
	 (A-7)

On comparing Eqs. (A-6) and (A-7) we see that so = 0o, so that

T
	 dr dr- H(r",r)	 -	 (-r----)11
	

(A-8)

jrs(r)so(r) dr

H(r',r) E vE f (r')0 0 (r1G0 (r'	 HvE f (r)0 0 (r) .

Since H is symmetric in r' and r, the imaginar y part of	 must vanish.
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Appendix B

EIGENVALUE AS A FUNCTION OF B IN AN INFINITE RANDOM ARRAY OF BUBBLES

Consider an infinite medium containing a "random" arra y of bubbles.

Suppose there is a finite (even though small) probability that a tremendous

cube cut out of this medium, a cube perhaps 100 mean-free paths in width,

contains no bubbles. Then somewhere in the medium there will be just such

a bubble-free cube. But this cube is, itself, essentially infinite and

the behavior of neutrons within the cube will be almost unaffected b y the

distribution of bubbles around it. Suppose the fission source, deep in

the cube, has a cosine distribution with buckling B 2 . Then the only possi-

ble eigenvalue for the whole infinite medium is the infinite medium eigen-

value in the absence of bubbles, for the given buckling B 2 . Thus the

concept of an infinite, "random" array of bubbles seems not very useful

unless the bubble distribution is severely constrained.
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Appendix C

ABSENCE OF FLIGHT-TO-FLIGHT CORRELATION

IN THE ONE-GROUP BUBBLE CALCULATION

Consider an infinite diffusing medium which, in a one-group model,

has the property that

	

s
E (r) - 

const. = a	 (C - 1)
vE

f
(
—
r)

Within our very simple model the flux throughout the medium is governed

by the following equation:

	

[	 1
Q • VF + E

t
F = — vE

f 
a +	 .

2	 x

where x is the system eigenvalue. If, now, we set E s (r) = 0, without

altering Et or vE f , the transport equation takes on the new form

vEf

Q • VF
a 

+ E
t
F
a 

=
2A

On comparing Eqs. (C-2) and (C-3), it is easy to see that, in fact,

F = Fa	
= 0. ,
	 (C-4)

and

1	 =	 + 1 =	 s	 1
	

(C-5)
A

a	
A	 vEf	 A

If the medium is a lattice then, at very low bucklings

(C- 2)
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vE vE ,
f

= —
E

k2B21	 A

2	 a
=

E
t

+ 1
2

0821
1

(C - 6)

z2 v'f/'. / E
f	 t . ( C -7)-	 1

[vE

X ak2

But,	 from Eq.	 (C-5)

vE/EEvE/E E
a	Ea

 vE/E
ft - s	 ft+	 1 -

fa
+ (C - 8)9

A
a	

E
t

vE/EEa

A

vEf/Ea

E
t	

E
t

ft
1	 - • (C-9)

A
a	

E
t

so that

A

E
£ 2	 =	 t (C-10)

1 E
a

as in Eq. (23) of the text.
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TABLE I

Asymmetric Lattice Cell Cross Sections

Moderator Absorber Fuel

Group 1 Group 2 Group 1	 1	 Group 2 Group 1 Group 2

Eal 
=0

vE fl = 0

Etl	 =	 1.01

E1-1 
=	 0.01

x	 =	 1
1

Ea2 
=0.2

vEf2 = 0

E t2 =	 1

E
2-2 

= 0.8

E
1-2	

=	 1 ' 0

x 2 = 0

c
al =0

vEfi = 0

El = 0
t

= 0

x1 =	 1

Ea2 =10

vE f2 =	 0

Et2 =
	 10

E2-2 =	 0

E 1-2 =	 0

 x 2 =	 0

c
al 

=0

vEfl = 0

E	 = 0
tl

E 1-1 = 0

X1 =	 1

Ea2 =10

vE f2 = 10

Et2 = 10

E 2-2 =	 0

E 1-2 =	 0

 x 2 =	 0
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Basic Lattice Cell

Geometry

Width of c: 1 1 across flats, cm

Radius of fuel pins, cm

Hexagonal	 Square

	

0.584	 0.56007

	

0.183	 0.175

Buckling,	 cm-2

Radial 36.0 x 10-4 17.8 x 10-4

Axial 20.4 x 10- 4 10.3	 x 10-4

EBR-II Fermi

E s ,	 cm-1	(solid	 fuel) 0.2823 0.2893

L 2	(solid fuel),	 cm2 24.0 28.7

E a , cm- 1 (solid fuel)

vE f , cm-1 (solid fuel)

cm-1 (solid fuel)E
t'

	0.0427	 0.0357

	

0.0858	 0.0643

	

0.325	 0.325

TABLE II

Webb's Reactor Parameters and One-Group Cross Sections
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TABLE III

One-Group Reactivity Estimates for ERR-II and Fermi

Ak/k	 (%)

EBR-I1 Fermi

Webb 0.9-1.7 0.9-1.7

Monte Carlo 0.63 ± 0.063 0.84 ± 0.084

TABLE IV

Iteration and Perturbation Estimates of Ak/k for EBR-II

Iteration

Perturbation

Ak/k

B2 = 20.4 x 10-2 132 .	 56.4 x 10-4

0.001256
±0.000037

0.001165
±0.00012

0.001507
±0.000091

0.001440
±0.00015

Note that the values of Ak/k listed here are computed
as if the pin material were a pure absorber.

42



TABLE V

Heterogeneity Effect for Bubbles

rhet hom - 1

A

Behrens Monte Carlo

Closely
Spaced General

Regular
Cube

Random
Cube

0.25 0.5625 0.5 0.5074 0.6038
±0.0018 ±0.0022

0.5 0.2813 0.2189 0.2454 0.3057
±0.0012 ±0.0014

0.1406 0.0828 0.1206 0.1544
±0.0009 ±0.0030

0.0703 0.0274 0.0586 0.0787
±0.0007 ±0.0007

0.0469 0.0142 0.0396 0.0521
±0.0006 ±0.0006

0.0352 0.0030 0.0292 0.0390
±0.0006 ±0.0006

0.0281 0.0064 0.0240 0.0322
±0.0005 ±0.0006

0.0201 0.0039 0.0180 0.0221
±0.0005 ±0.0005

10 0.0141 0.0024 0.0116	 0.0157
±0.0005	 ±0.0005

Note: Ret/T121Omi	 1 for f = 0.25, d = 2 cm.

Here A is the mean-free path in the material
between bubbles.

43



TABLE VI

Geometry Parameters and Composition
for Bubble Lattice Cell

Lattice array

Bubble radius, cm

Side of cube, cm

Void fraction

B2 (B = B = B )
x	 y	 z

Cross sections

Regular cubic array

0.793701 cm

2.030982 cm

0.25

0.003733

ENDF/B level 3

Composition of fuel prior to fuel expansion:

Isotope No. Density	 (atoms/cm3)

240pu 0.66736 x 1021

241pu 0.34960 x 1021

235u 0.10622 x 1021

238u 0.15134	 x 1023

239pu 0.23490 x 1022

Cr 0.14189 x 1022

Ni 0.96939 x 1021

Fe 0.37448 x 1022

160 0.37448 x 1023

Mo 0.10985 x 1021

55Mn	 0.13429 x 1021

kco
	 1.5719 ± 0.0031
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TABLE VII

p and 13 for A = 0.25, 3, 10 with d =	 cm and f = 0.25

P i;

A Behrens	 C.	 S. M.	 C.	 Regular M.	 C.	 Random M.	 C.	 Reou'ar M.	 C.	 Random

0.25 0.5625 0.5074 ± 0.0018 0.6038 ± 0.0022 0.4908 ± 0.015 0.6064 ± 0.020

3.0 0.0469 0.0396 ± 0.0006 0.0521	 ± 0.0006 0.0375 ± 0.0062 0.0404 ± 0.0061

10.0 0.0141 0.0116 ± 0.0005 0.0157	 ± 0.0005 0.0078 ± 0.0042 0.0131	 ± 0.0043



TABLE VIII

Geometry Parameters and Composition for CRBR Cell

Lattice cell	 Hexagonal

Pin radius, cm	 0.2921

Side of hexagonal cell, cm	 0.4194103

Equivalent outer cylinder radius, cm 	 0.38140826

Void fraction	 0.41348

B2 cm-2	 4.8997 x 10-4r'
B2 cm-2	 4.6942 x 10-4
z'

Cross sections	 ENDF/B level 3

Composition of intact pin -- fuel and clad homogenized
together in pin:

Isotope Density (atoms/cm3)No. 

24 0P	 0.385845 x	 1021

281 Pu	 0.550715 x	 1020

235u	 0.802042 x 1020

238u	 0.113890 x	 1023

239pu	 0.285338 x 1022

Cr	 0.393535 x	 1022

Ni	 0.195256 x 1022

Fe	 0.140739 x 1023

16 0 	 0.289482 x 1023

Mo	 0.296944 x 1023

1,688 ± 0.004
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TABLE IX

One-Group Macroscopic Cross Sections
for Pin and Bubble Lattices —

Intact Pins and Unexpanded Fuel

Pin Lattice Bubble Problem

vE c ,	 cm-1 0.017431 0.017596

E a , CM-1 0.010147 0.011225

E s ,	 CM-1 0.353830 0.367428

E
t' 

CM-1 0.363977 0.378653
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A

II

I Moderator

II Absorber

III	 Fuel

0.5 cm 	 0' 0.1 cm 0.1 cm

	 UNIT CELL 	

Fig. 1. Asymmetric cell geometry.
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Fig. 2. Thermal flux (normalized to an integral of unity.)
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